Seasonal and Interannual Variations of the Energy Flux Equator and ITCZ. Part II: Zonally Varying Shifts of the ITCZ
نویسندگان
چکیده
The ITCZ lies at the ascending branch of the tropical meridional overturning circulation, where nearsurface meridional mass fluxes vanish. Near the ITCZ, column-integrated energy fluxes vanish, forming an atmospheric energy flux equator (EFE). This paper extends existing approximations relating the ITCZ position and EFE to the atmospheric energy budget by allowing for zonal variations. The resulting relations are tested using reanalysis data for 1979–2014. The zonally varying EFE is found as the latitude where the meridional component of the divergent atmospheric energy transport (AET) vanishes. A Taylor expansion of the AET around the equator relates the ITCZ position to derivatives of the AET. To a first order, the ITCZ position is proportional to the divergent AET across the equator; it is inversely proportional to the local atmospheric net energy input (NEI) that consists of the net energy fluxes at the surface, at the top of the atmosphere, and zonally across longitudes. The first-order approximation captures the seasonal migrations of the ITCZ in the African, Asian, and Atlantic sectors. In the eastern Pacific, a third-order approximation captures the bifurcation from singleto double-ITCZ states that occurs during boreal spring. In contrast to linear EFE theory, during boreal winter in the eastern Pacific, northward cross-equatorial AET goes along with an ITCZ north of the equator. EFE and ITCZ variations driven by ENSO are characterized by an equatorward (poleward) shift in the Pacific during El Niño (La Niña) episodes, which are associated with variations in equatorial ocean energy uptake.
منابع مشابه
Seasonal and Interannual Variations of the Energy Flux Equator and ITCZ. Part I: Zonally Averaged ITCZ Position
In the zonal mean, the ITCZ lies at the foot of the ascending branch of the tropical mean meridional circulation, close to where the near-surface meridional mass flux vanishes. The ITCZ also lies near the energy flux equator (EFE), where the column-integrated meridional energy flux vanishes. This latter observation makes it possible to relate the ITCZ position to the energy balance, specificall...
متن کاملA Conceptual Model for the Response of Tropical Rainfall to Orbital Variations
Tropical rainfall to first order responds to variations in Earth’s orbit through shifts of the intertropical convergence zone (ITCZ) and changes in zonally averaged rainfall intensity. Here, a conceptual model is developed that represents both processes and their response to orbital insolation variations. The model predicts the seasonal evolution of tropical rainfall between 308S and 308N. Inso...
متن کاملThe Equatorial Energy Balance, ITCZ Position, and Double-ITCZ Bifurcations
The intertropical convergence zone (ITCZ) migrates north–south on seasonal and longer time scales. Previous studies have shown that the zonal-mean ITCZ displacement off the equator is negatively correlated with the energy flux across the equator; when the ITCZ lies in the Northern Hemisphere, energy flows southward across the equator, and vice versa. The hemisphere that exports energy across th...
متن کاملThe Relationship between ITCZ Location and Cross-Equatorial Atmospheric Heat Transport: From the Seasonal Cycle to the Last Glacial Maximum
The authors quantify the relationship between the location of the intertropical convergence zone (ITCZ) and the atmospheric heat transport across the equator (AHTEQ) in climate models and in observations. The observed zonal mean ITCZ location varies from 5.38S in the boreal winter to 7.28N in the boreal summer with an annual mean position of 1.658Nwhile the AHTEQ varies from 2.1 PW northward in...
متن کاملFeedback of Atmosphere-Ocean Coupling on Shifts of the Intertropical Convergence Zone
It is well known that the intertropical convergence zone (ITCZ) shifts in response to remote perturbations in the atmospheric energy balance, with shifts roughly in proportion to changes in the cross-equatorial atmospheric energy flux. However, atmospheric and oceanic energy fluxes in low latitudes are mechanically coupled, and the oceanic energy flux dominates the atmospheric energy flux. Here...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016